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Front Speed in the Burgers Equation
with a Random Flux
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We study the large-time asymptotic shock-front speed in an inviscid Burgers
equation with a spatially random flux function. This equation is a prototype for
a class of scalar conservation laws with spatial random coefficients such as the
well-known Buckley-Leverett equation for two-phase flows, and the contami-
nant transport equation in groundwater flows. The initial condition is a shock
located at the origin (the indicator function of the negative real line). We first
regularize the equation by a special random viscous term so that the resulting
equation can be solved explicitly by a Cole-Hopf formula. Using the invariance
principle of the underlying random processes and the Laplace method, we prove
that for large times the solutions behave like fronts moving at averaged constant
speeds in the sense of distribution. However, the front locations are random,
and we show explicitly the probability of observing the head or tail of the fronts.
Finally, we pass to the inviscid limit, and establish the same results for the
inviscid shock fronts.

1. INTRODUCTION

We are interested in studying the initial value  problem of the following
Burgers equation with spatially random flux:

with initial data v(x,G) = I R ( x ) , the indicator function of the negative real
line. Here a(x, ca) is a positive stationary random process. The complete list
of assumptions a satisfies will be stated as A1-A5 in the next section.
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or its viscous analogue where the right hand side is instead a second-order
elliptic term. Some of the equations of this form are: (1) the Buckley-
Leverett equation for two-phase flows, see ref. 10 and references therein;
(2) the contaminant transport equation, see refs. 25 and 4; and (3) the
Richards equation for infiltration problems, see refs. 16 and 17, among
others. The specific form of the nonlinear and random function / depends
on the problem at hand.

One of the fundamental issues discussed in these works is the shock
dynamics in random media. This is usually a very difficult problem since it
involves both nonlinearity and randomness. Equation (1.1) appears to be
one of the few tractable cases where one can study rigorously the shock
propagation in a random medium, here characterized by a. Burgers equa-
tion has been extensively studied recently in the literature as a model for
turbulence and also for random shock asymptotics, see refs. 1, 2, 20-22;
and 7, 23. In ref. 23, the present authors proved that under white noise
initial perturbation, the viscous shock fronts move at the unperturbed
speeds with their locations randomly distributed, and obey a central limit
theorem in the large time limit. What happens to shocks in random media?
Do they propagate? If so, at what speed? What about their locations? We
will answer these questions in the context of Eq. (1.1). Our approach is to
regularize (1.1) by adding the viscous term v ( S a ( x ) ( S a ( x ) v)x)x to its
right-hand side. The resulting equation can be transformed into the
standard viscous Burgers equation for another function, u, through a ran-
dom change of spatial variables. The initial data for U can be thought of as
a random perturbation of the inviscid Burgers shock. The transformation
of variables mentioned above is thus transferring the randomness from the
coefficients of the equation to the initial data. The Cole-Hopf formula is
then used to write down the solution in an explicit form. The formula is in
the form of a ratio, involving five terms, which can be analyzed using
probabilistic estimates, with the help of Laplace method, similarly to what
was done in ref. 23. The new difficulty is that we now do not have the
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When a is a constant, say one, it is well known that shock solutions
are asymptotically stable and attract front-like initial data, see the classical
work.(11) In applications to geoscience and other areas, however, shocks
typically travel in spatially inhomogeneous environment because of the
natural formation of porous structures. Due to lack of experimental or field
data, the spatially inhomogeneous environment is modeled as a random
process. Conservation of mass then leads to a scalar conservation law with
a random flux:



scaling property of the Brownian motion which in ref. 23 was coming
directly from the form of the initial perturbation (the white noise). Instead,
we resort to an invariance principle in order to apply the Laplace method.
The required invariance principle (i.e., a functional central limit theorem)
holds for a class of T-mixing processes a(x, w); it is stated in detail in Sec-
tion 2. Finally, we pass to the v -»0 limit of solutions to obtain results on
the inviscid random shocks. It is known that such shocks are unique and
satisfy the entropy conditions.(12) We find that the inviscid shocks move at
constant asymptotic speeds, and that the shock locations are random with
their heads or tails seen with explicit probabilities as we probe the solution
along the ray x = ct + z St, where c is the constant shock speed and z is
a real parameter.

The rest of the paper is organized as follows. In Section 2, we state the
main assumptions and the main theorem of the paper. Then we introduce
the change of spatial variables and the Cole-Hopf representation of solu-
tions. In Section 3, we give the proof of the main theorem using invariance
principle and Laplace method. Some of the technical results in the proof
are relegated to Section 4, the Appendix. In particular, an invariance prin-
ciple for hitting times, which may be of independent interest, is proven
there (Theorem 4.1).

2. MAIN THEOREM AND THE COLE-HOPF SOLUTIONS

The principal object studied in this paper is the inviscid Burgers equa-
tion with a random flux:
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We are interested in the long-time behavior of the solution to (2.1) with
initial data of the front type:

Here IR denotes the indicator function of the negative real line and
a(x, w) is a stochastic process, satisfying the assumptions A1-A5 stated
below. The assumptions A3 and A4 are stated in the way we use them and
at this stage may appear somewhat technical. Below (see Remark 2.1) we
describe a natural class of processes for which these assumptions are
satisfied.

A1. Stationarity: the finite-dimensional distributions of the process
a(x, w) are invariant under translations of the variable x.

A2. Positivity: a(x, w) >0 with probability one.



A3. Measurability and integrability of the inverse: paths of a are
measurable functions of x and

It follows that also

Note that E ( x ) < 0 for x < 0. For each x0 > 0, we have

3) denotes converges of processes in law; see ref. 3. We stress that the finite-
ness of the last integral is part of the assumption. R2 is sometimes called the
velocity autocorrelation function (of the process 1/a).

A5. Regularity: we assume that the paths of the process a are Holder
continuous with some (positive) exponent. This will be used in the proof of
the main theorem, to justify taking the zero viscosity limit. A well known
probabilistic condition which implies Holder continuity of sample paths is
the Kolmogorov moment condition (ref. 18, Theorem 25.2).

Remark 2.1. A large class of processes for which (2.3) holds is the
class of stationary processes a(x, w), satisfying the appropriate T-mixing
condition. Here T is a nonnegative function of a positive real variable, such
that

as t -> oo, where W=(Wx)xeR is the Wiener process and

A4. In variance principle: Let
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and the T-mixing condition says that, for any t > 0 and for any s, whenever
an event E1 is in the R-field generated by the random variable a(x) with
— oo < x < s and an event E2 is in the R-field generated by a(x) with s +t <
x< +00, we have

Roughly speaking, because of (2.4), (2.5) expresses a decay of correlations
of the variables a(x). More information on R-mixing processes can be
found in ref. 3, where it is, in particular, proven (pp. 178-179 of ref. 3) that
the invariance principle (assumption A4) holds if

It is well-known that the Burgers fronts are asymptotically stable for
spatially decaying initial perturbation.(11) The following main result of the
paper shows that the front structure is also present in the random flux case.
Throughout the paper the symbol -> denotes convergence in distribution.

Theorem 2.1. Let 2c = E[a1/2]-2 denote the square root-
harmonic mean of the variables a(x). Then as t-> oo:

where X is a random variable equal to S2c with probability N((U2/R) z)
and equal to 0 with probability 1 — N ( (U 2 /a ) z), where N ( s ) = 1 \ / 2 P
{•'_„ e~s'/2ds' is the error function.

Remark 2.2. The first two parts of the theorem say, roughly speak-
ing, that to leading order the shock speed in the presence of randomness
equals c. We expect to prove that an analogous result holds (with some c)
for a more general class of nonlinear conservation laws with noisy initial
data (but no randomness in the coefficients of the equation) using scaling
arguments and continuous dependence of solutions on the initial data. We
propose to use this method to handle the viscous as well as the inviscid
case. While more general, this method does not provide more detailed
information about the front location contained in part 3 of the theorem
(see also ref. 23).

Remark 2.3. In the inviscid case, we also plan to generalize the
strategy applied in this paper to other nonlinearities as follows. We represent



Since this change of variables depends on the realization of the process a,
we obtain this way a stochastic process E ( x , w), which has already been

To simplify the last equation, we change the space variable:

Equation for u becomes:

where v > 0. It is convenient to rewrite this equation in terms of the
function

the solution as a limit of approximate solutions, given by explicit expressions.
The asymptotic behavior of these approximate solutions is then studied using
bounds analogous to those developed here.

Remark 2.4. For problems with more general (nonquadratic) non-
linearities, one can scale x and t by a small parameter e and formulate a
homogenization problem for the integrated conservation laws, namely the
Hamilton-Jacobi equations. For the periodic case, such problems are well-
studied, ( 13 ,6 ) and one can even formally derive part (1) and part (2) of
Theorem 2.1 from the averaged Hamiltonian obtained in refs. 13 and 6.
However, extending these results to the random setting is a challenging
task, and it remains an interesting problem to study rigorously the connec-
tion between random homogenization of Hamilton-Jacobi equations and
our results here.

Remark 2.5. Burgers equation can be thought of as a hydro-
dynamic limit of the asymmetric simple exclusion process. In this context,
we would like to mention that shock location has been studied for such a
process, see ref. 8 and references therein. These results are analogous to
ours (see also ref. 23).

In the proof of Theorem 2.1, we will make use of a regularized version
of the equation (2.1):
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used to state assumption A4. Equation for u in the variables (E, t) becomes
the standard viscous Burgers equation:

with the new initial condition:

It is known that the speed of an (unperturbed) shock of the Burgers equa-
tion is equal to its height divided by two. This offers an intuitive, if non-
rigorous, explanation of the results of the theorem: the asymptotic speed of
the front described arising from our random initial condition equals one
half of its average height, calculated in the E variable, i.e.,

which, after changing the variable of integration to x, gives

which is 1E[a 1 / 2] - 1 .To get from this the front speed in the x variable,
we divide this value by E[a -1 /2] in view of (2.13) and arrive at the speed
c in the main theorem. A similar, but more detailed argument, taking into
account fluctuations of the total mass in a finite interval of the initial data,
leads to a heuristic justification of the Gaussian statistics of the front location.

To prepare the proof of Theorem 2.1, we need to introduce the Cole-
Hopf representation of the solution, rewrite it in a convenient form, and
prove some auxiliary results about asymptotic behavior in distribution of
its constituent terms.

The paths of the process E , (x , w) are (with probability one) con-
tinuous, strictly increasing functions of x. Therefore, they have continuous
inverses, defining another process, x ( £ , w ) . Our assumption A4 says that
the process E(x , w) satisfies an invariance principle. In Appendix, we prove
a theorem (Theorem 4.1), which will be used crucially in the proof of
Theorem 2.1, and which says that the same is also true about the process
x(E). More precisely, Theorem 4.1 (which is stated using a different nota-
tion) implies that
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(see assumption A4 for the definition of a). In the sequel, we will use the
following notation for the process x(E) with the mean subtracted:

The Cole-Hopf formula(24) for u reads:

where

(the second equality follows by changing the variable to x (N ' ) , where x
denotes the inverse of E and using the fact that the derivative of E, is 1 / a ;
see (2,13). Let u1= l/E[a-1/2]. Even though, clearly, uI= 1/u = S2c, it is
convenient in this context to use the suggestive notation uI (the "left state
of U"; see (2.8)). The numerator of (2.18) is equal to:

which, with the substitution y = E — n, becomes



3. PROOF OF THEOREM 2.1

In the next two propositions we prove that a part of the expression for
u goes to zero. These propositions will be used in the proof of Theorem 2.1,

The consecutive terms in the last expression will be denoted by At, Bt and
Ct respectively. Proceeding in a similar way, we can write the denominator
in the form ( B t / u I ) + DI, where Bt is as above and

Finally, we introduce a new variable n = x'/St and rearrange the order of
the terms to get
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Changing variable to x' =y — u lt , the numerator becomes



can be bounded below by

Therefore the integral

with an absolute constant c. For negative E, we restrict the integration in
the definition of B, to the interval 0 < n < 1 and note that, since x ( u ) / S u \
converges in distribution to a normal random variable (by Theorem 4.1),
with probability one there exists an (w-dependent) constant C such that for
all u

where it will be important that the convergence takes place uniformly in v,
in the apppropriate sense defined below in (3.1). With this in mind, we
adopt the following convention about constants: constants independent of v,
but depending on the random parameter W (i.e., on the realization of the
random flux) will be denoted by C(W), or simply by C. Constants inde-
pendent of both v and W will be denoted by c. The actual value of C or c
may vary from one line to another.

Proposition 3.1. l im T - > A sup E A T / (B T /u T ) + DT = 0. Moreover,
convergence is uniform in v in the sense that for every e>0, as T-> I:
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for any v0 > 0. (Note that convergence in distribution to 0 is equivalent to
convergence in probability to 0).

Proof. For positive £ we have



with equality in law of processes in the variable y e R. Theorem 4.1 implies
now that the processes

Stationarity of a implies easily that

We shall first consider the values of E satisfying

Changing the variable to y = t t / 6n, we obtain

for almost all ca. Combining (3.2) and (3.6) ends the proof.

Proposition 3.2. limt->a s u p E C , / ( B , / u l ) + Dl = 0. Moreover, the
convergence is uniform in vE(0, v0) in the sense described in the statement
of Proposition 3.1.

Proof.
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for all t and E. This implies that for almost all w and t > 1 (uniformly in
E<0), we have

The last expression clearly goes to oo uniformly in E<0 as t-» +00. Since
A, is bounded from above by an absolute constant, it follows that
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where R is defined in A4, converge in law to the Wiener process. It follows
from the Skorohod representation theorem (Theorem 4.2) that there exists
a probability space (Q, F, P) and processes f(t), W on that space, such that
for each t

W is a Wiener process and with P-probability one

uniformly in y belonging to any compact interval. Using Lemma 4.1, we see
that as long as (E — u,t)/t2/3 -> -co, the ratio of the two integrals of (3.8)
converges in distribution to y0, where y0 denotes the unique value of y
where the function Wy — (y2/2) attains its maximum. Existence and unique-
ness of such a point were proven in ref. 23, where they were used for
asymptotic analysis of the expression

(3.8) implies now that, for almost all W, C,/B, converges to zero uniformly
in E satisfying (3.9). To handle the values of E for which

Note that E — (u,/2) t -» +00, uniformly in E satisfying (3.15). We will now
use an argument similar to the one used in the proof of Proposition 3.1,
to show that for almost all W, C t /B t converges to zero uniformly in E
satisfying (3.15) as well. Namely, with probability one there exists an
(w-dependent) constant C such that (3.3) holds. This, together with sub-
additivity of the function u-> |u|2/3, implies that

Therefore the E-dependent part of the integrand can be absorbed into the
prefactor:
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We now divide the integral in the last formula into two parts, corresponding
to |n| < 1 and |t| > 1. The first integral is clearly bounded above by

The last expression goes exponentially fast to zero, uniformly in E satisfying
(3.15), since for those E

When |n|> 1, we have |n|2/3 < |n| and, consequently, the right-hand side of
(3.16) is bounded above by

The integral in the above formula can be estimated by first absorbing the
factor |n| into the exponential factor (by making C bigger) and then using
the identity

with s = t1/3. We obtain this way

the last expression clearly goes to zero uniformly in E satisfying (3.15) (see
(3.17)). Since for these E, Dt can be uniformly bounded from below by
c S t , where c>0 is an absolute constant, the proof is finished.

Proof of Theorem 2.1. The strategy of the proof is to study the
solution of the regularized equation (2.10) via its Cole-Hopf representation
and then take the limit when v -»0. It follows from the two preceding
propositions, that we just need to study the limiting distribution of
B tl(B t/u l) + Dt.

Assume a > c. In the E coordinate, this means that in the representa-
tion (2.21) of Bt the factor e-(uI/2v))E-(uI/2)t)goes exponentially fast to zero,
uniformly in v. We now use the bound (3.3) (true with probability one for
some constant C) and proceeding exactly as in the proof of Proposition 3.2,
we have, with probability one,



Since the random variables 1/a(a.t) are tight (by stationarity of a), the
product in (3.22) goes to zero in distribution. This ends the proof of
part 1 of the theorem.

To prove the same thing for v, note that by (2.11),

Moreover, u0(x, t) is the unique weak solution satisfying entropy condi-
tions. Notice that the continuous differentiability of a(x) in x in ref. 15 is
used in constructing characteristic curves. In our case, since we can make
change of variables to get inviscid Burgers equation in the E variables, con-
tinuity of a(x) is enough. By ref. 19, we also have unique entropy solutions.

It follows from (3.20) and (3.21) that

Thanks to assumption A5, we apply the results of ref. 15 (Theorem 13 and
Theorem 14) and ref. 19 to conclude that for any given t, except for a set
of x consisting of countably many discontinuities of the first kind (shocks),

almost surely and therefore the analog of part 1 of the theorem is proven
for the solution uv, v>0, solving the regularized equation (2.10). Note that
all the above convergence statements, including (3.19) hold uniformly in v.
It follows that
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This clearly implies that Bt -»0 almost surely as t -» oo. On the other hand,
Dt-» +00 (at the order of /t), so
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Similarly, if a < c, Bt grows exponentially fast with probability one
(since the exponential prefactor in (2.21) does), while Dt grows at most like
St (if at all). Hence in this case

and part 2 is proven for a positive v. Just as in the proof of part 1, it suf-
fices to note now that the convergence is uniform in v and part 2 of the
theorem follows. Note that, unlike in part 1, «,, does not converge to zero
and therefore, we do not obtain convergence of v(at, t). In fact, (2.11)
shows that u(at, t) fluctuates as t -» oo. Let now

We want to find the distribution of

in the limit when t -» oo. We know that D, behaves as St times a constant,
proportional to y/v. Roughly speaking, B, is either exponentially large or
exponentially small and depending on which one of these two things hap-
pens, the above ratio is close to ul or to 0. This will be seen from the
calculation below. Let y E (0, uI) (note that clearly 0 < Bt,/(ul

-1 Bt + D t)< u l).
We have:

Now, v l o g ( u l y / ( u l — y ) ) / t - > 0 and, since Dt is of the order Svf, we also
have v logDt,/t-> 0 as well. Both convergence statements hold



uniformly in y belonging to any compact interval. Lemma 4.1 now implies
that as t -> oo, the distribution of

and for almost every w

converges in distribution to the Wiener process in the variable y, on any
finite interval of y. Using the Skorohod representation theorem
(Theorem 4.2), we can find a probability space ( Q , F , P ) and processes
T(t)(y, w), W(y, w) such that W is a Wiener process,

Now,

Changing the variable of integration, as in the proof of Proposition 3.2, to
y = t - l / 6n, we obtain

Similarly to ref. 23 we now write

uniformly in v in the sense explained in (3.1). The limit of the probability
in (3.25) is therefore equal to
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where p(t) = e-(UL/2V)(E-(UL/2)T)-X(e-ULT)/2V and
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converges to that of a constant times

(That the assumptions of the lemma are satisfied, follows easily from the
assumption A4.) It follows that

uniformly in v, and we just need to study the behavior of vt l / 2 l o g p ( t ) .
Now,

where E = E(ct + z S t ) . Since c = 1/2U2 and ul= 1/u, substituting (3.24), we
get from the central limit theorem for E in assumption A4 that:

where here and in the sequel, W1 is used to denote a Gaussian random
variable with mean zero and unit variance. Also, using the central limit
theorem for x ((2.16) with b=1/2u), we obtain:

In order to study the limiting distribution of the sum in (3.29), we need to
know the joint distribution of the variables u l(E(ct + z St) — (u,/2) t ) / S t
and x(E — u 1 t ) / S t in the limit when t-> oo. We claim that the two-dimen-
sional random variables

converge in distribution to a two-dimensional Gaussian with independent
coordinates of mean z and 0 respectively. To prove this claim, we express
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the joint distribution function of the coordinates through a finite-dimen-
sional distribution of the process E = E(ct + z S t ) :

Using the fact that Uc = u t/2 and rewriting the event

as

we obtain, using the invariance principle of assumption A4, the following
expression for the joint distribution function (3.30) in the limit t-> oo:

The last expression clearly factors, since the processes (Wx)x>0 and
(Wx)x < o are independent, and this proves the claimed independence. Note
that we also recovered the formula for the variance of each coordinate. In
fact, the calculation above can be generalized to provide an alternative
proof that the finite-dimensional distributions of the rescaled process x
converge to those of the Wiener process (this fact is a part of Theorem 4.1).



and

Taking the limit v -»0 we obtain from these two relations

In exactly the same way, we can show that

where jV(s} = 1//2P\x Oe s~/2 ds' is the error function. This ends the
proof for v>0. Because in this case u(ct + z S t , t) does not converge to a
constant, a more careful argument is necessary to carry out the v -»0 limit.
Since the above estimates were uniform in v, we have actually shown that
for every yE(0, u1),

converges in distribution to a Gaussian random variable with mean z and
variance R2/U4. Hence,

Going back to the main line of the proof and adding the variances of the
two limiting normal distributions, we see that the sum
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Hence

so that (3.35) and (3.36) are satisfied as equalities. If there exists a sequence
tn -» oo such that

then, since also

adding the last two equations, we get a contradiction. Therefore

and

Since the right hand side is continuous in z, these two equalities are valid
for all z, and so together with (2.11) prove the last part of the theorem.

4. APPENDIX

We prove the results invoked in the proof of the Theorem 2.1 here.

Lemma 4.1. Let T ( u ) E C ( R 1 ) , T l ( u ) - > T ( u ) , uniformly on com-
pact sets of u as L -» co; and C1u2 < |OL(u)| < C2u

2 for some positive con-
stants Ci, i= 1, 2, uniformly in L-» O. The limiting function T ( u ) E C(R1) ,
T ( u ) < T ( u 0 } , V W ^ M Q - Here c0 and C are positive constants. Then for the
probability measures UL with densities e x p { L T L ( u ) } d u / R 1 exp{LTL(u)} du,
we have as L -» +00:



By our assumption on Tx, we see that for any given d>0, there exist
constants Ki = K i ( d ) >0, i=1,2, Al = A1(d), such that if L>A1 and
uE[u0-3d, u0 + 3d],

Let us denote w0 = w 0 ( d , u 0 ) = l i m s u p L - > o s u p | u _ U 0 | < 4 d | T l ( u ) - T L ( u 0 ) | .
Now the second term can be written as:

The first term is bounded as:
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Proof. Let Y(u)eCO(R1), |Y(u)| <C(1+u2)m, for some w>0. By
the assumption on <p>(u), V<S>0, 3l1=l1(D) such that if A^y1,, any
maximal point ux of (p^(u) lies in [MO — d, w0 + d], and so:
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On the other hand, for any d1 >0, there is A2(d) such that if L> A2, we
have:

Hence:

Choosing d1 small enough so that 8 w 0 ( d 1 , u0) <9d2K(d), and letting
A-» oo, we have:

while

Finally, sending S -»0, we conclude that
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This is, in particular, true for all bounded Y, which implies part 1 of the
lemma, and also for Y ( u ) = u:

which proves part 2. For part 3, we only need to show that:

The above integral can be decomposed into the sum of two integrals over
|u - u0| < 4d and its complement, which we denote by IL,1 and IL, 2 respec-
tively. Notice that for |u — u0| <4d, there exists a positive constant K'(S),
K'(d) -> 0 as d -»0, such that:

We now have the upper bound for IL,1:

Similarly, we have the lower bound 4de -LK'(d) Now let us bound IL, 2 from
above using (4.7) as:

Similarly, we have the lower bound for IA, 2 with K2 replacing K1. Com-
bining (4.12), (4.13), and the analogous lower bounds, and using the
arbitrary smallness of D, we arrive at (4.11). The proof is complete.



The last quantity clearly goes to zero when t goes to infinity, since by (2.3)
the processes [ E ( t ( ( b / u ) + n)) — ut(b/u) + n)]/t converge in law to the

as t -» oo. We have, by positivity of a:

We will show it in a stronger form: for any b0 and for any N > 0

Remark 4.1. The theorem is thus roughly saying that the
in variance principle (2.3) for the rescalings of the process E implies an
invariance principle for the rescalings of the hitting times process. Central
limit theorems for hitting times are known in similar contexts (see e.g. [5],
p. 116). While the present theorem may also exist in literature, a precise
reference is not known to the authors.

Proof. The first observation is that the hitting times T(tb) satisfy a
law of large numbers:

866

Theorem 4.1. Let
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Under above assumptions we have for each b0 > 0



The first term goes to zero when t-» oo, in view of (4.14). Rewriting the
second term as

Indeed, for any e, r\ > 0, we have

since, by definition, E ( T ( t b ) ) = tb. The argument of £ in the expression on
the right-hand side of (4.16) is a random time T(tb), which is not far from
tb/u. It is therefore natural to expect that £(T\tb)) does not differ much
from £(tb/n). In fact, as we will now show,

so that, in particular, E[£(x)] =0. We have:

Let

and (4.14) is proven. Next, we show that for a fixed b
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process (aW(h/ft} + n ) | b | < b 0 , while the numbers — nu t go to — oo. A similar
argument shows that
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and using the invariance principle for E as in (2.3), we see that the second
term in (4.18) converges to

Taking now n to zero, we obtain (4.15). Since, by (2.3) again,

(4.17) follows. This proves that one-dimensional distributions converge to
those of the Wiener process. A similar calculation shows convergence of
arbitrary finite-dimensional distributions to those of the Wiener process.
We only sketch the argument, since, apart from the notation, it does not
contain any new elements. Given b1,..., bne [0, £>„], we have by (4.17):

for /=!,...,«. This implies that the limit of the distribution of the
random vector ( 1 / / u ~ 3 / 2

S t ) ( T ( t b ^ ) — (tbjn)) is the same as that of
(1 /u~ 3 / 2 aT/ i ) (E( tb , /n) ) , provided that the latter exists. It follows from the
invariance principle for the process E that the limit in fact exists and is the
finite-dimensional distribution of the Wiener process, as claimed.

To complete the proof it remains to show that the family of processes
( r ( n ( b ) ) 0 < b < b 0 = ( ( 1 / ^ / t ) ( T ( t b ) - ( t b / u ) ) ) 0 < b < b 0 is relatively compact in
the topology of convergence in law. We are using here Theorem 8.1 of [3],
which is used in the sequel as our principal reference for questions related
to convergence in law. According to a standard criterion of tightness
(Theorem 8.2 of [3]), it is enough to show that the following two condi-
tions hold:

1. For each positive n there exists an a such that

2. For each positive e and n, there exists a d0 with d E (0, d0) and a
t0 such that |T ( t )b)-T ( t )(c) |>e

for all t > t 0 .



by virtue of the invariance principle for E in (2.3). Choosing 6 small enough
and taking O = 8 (say), we can make this limit smaller than n/4, since
almost all paths of the Wiener process, are uniformly continuous on the
compact interval [0, b0]. For t large enough, (4.19) is thus bounded by n/2.
As we have seen in (4.15), for any fixed o the second term goes to zero, so
choosing t0 large enough we can make the second term in (4.19) smaller
than n/2 as well. Theorem 8.2 of [3] together with the convergence of
the finite-dimensional distributions, proven above, implies the desired
statement of the theorem. The proof is complete.

and this probability converges to

The first term on the right-hand side is obviously bounded by

Therefore:

Also:
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Condition 1 is obviously satisfied, since T( t)(0) =0 for each t. To prove that
condition 2 also holds, let us fix a O>0. If there exist b, ce[0, <S0] such
that \ i ( l ] ( b ) - T ( n ( c ) \ ^ E , then with b' = T(tb)/t and c' = T(tc)/t, we have
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In the proof of Theorem 2.1, we use a theorem by Skorohod, which we
state here in a special case, suitable for our application. A general version
can be found, together with a proof in [18] (Theorem 86.1).

Theorem 4.2. Suppose that (T( t ) )(b))0<b<b0 is a family of stochastic
processes, converging in law to a process T as t -> oo:

Then there exists a probability space (Q, F, P) and processes T(t), T such
that:

and with P-probability one

uniformly in 0 < b < b0.

ACKNOWLEDGMENT

The work of J. Xin was partially supported by NSF grants DMS-
9302830 and DMS-9625680.

REFERENCES

1. M. Avellaneda, Statistical Properties of Shocks in Burgers Turbulence II: Tail
Probabilities for Velocities, Shocks and Rarefaction Intervals, Commun. Math. Phys.
169:45-59 (1995).

2. M. Avellaneda and W. E, Statistical Properties of Shocks in Burgers Turbulence, Commun.
Math. Phys. 172:13-38(1995).

3. P. Billingsley, Convergence of Probability Measures (Wiley, 1968).
4. W. Bosnia and S. van der Zee, Transport of Reacting Solute in a One-Dimensional

Chemically Heterogeneous Porous Medium, Water Resour. Res. 29 (1993), No. 1,
pp. 117-131.

5. R. Durrett, Probability: Theory and Examples, 2nd ed., Wadsworth and Brooks, 1995.
6. L. C. Evans, Periodic homogenization of certain nonlinear partial differential equations,

Proc. Roy. Soc. Edinburgh 120A (1992), pp. 245-265.
7. H. Fan, Elementary Waves of Burgers Equation Under White Noise Perturbation,

preprint, 1995.
8. P. Ferrari and L. Fontes, Shock fluctuations in the asymmetric simple exclusion process,

Prob. Theory Related Fields 99 (1994), pp. 305-319.
9. P. Groeneboom, Brownian Motion with a Parabolic Drift and Airy Functions, Prob. Th.

Rel. Fields 81:79-109 (1989).



10. H. Holden and N. H. Risbero, Stochastic Properties of the Scalar Buckley-Leverett Equa-
tion, SIAM J. Appl. Math., Vol. 51, No. 5, pp. 1472-1488 (1991).

11. A. M. Ilin and O. A. Oleinik, Behavior of the Solution of the Cauchy problem for certain
quasilinear equations for unbounded increase of the time, AMS Transl. ( 2 ) , 42 (1964),
pp. 19-23.

12. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock
waves, Philadelphia SIAM Regional Conf. Ser. in Appl. Math., No. 11 (1973).

13. P. L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi
equations, unpublished.

14. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,
1991.

15. O. A. Oleinik, Discontinuous solutions of the nonlinear differential equations, Uspehi Mat.
Nauk (N.S.) 12 (1957), no. 3(75), 3-73; AMS Translations, pp. 95-172 (1963).

16. J. R. Phillip, Theory of Infiltration, Adv. in Hydrosciences 5, pp. 213-305 (1969).
17. J. R. Phillip, Issues in Flow and Transport in Heterogeneous Porous Media, Transport in

Porous Media, Vol. 1 (1986), pp. 319-338.
18. L. C. Rogers and D. Williams, Diffusion, Markov Processes and Martingales, Vol. 1,

Foundations, John Wiley and Sons (1994).
19. B. L. Rozdestvenskii, The Cauchy Problem for Quasilinear Equations, Dokl. Akad. Nauk,

SSR 115 (1957), pp. 454-157; AMS Translations, Series 2, Vol. 42, pp. 25-30 (1964).
20. Z.-S. She, E. Aurell and U. Frisch, The Inviscid Burgers Equations with Initial Data of

Brownian Type, Commun. Math. Phys. 148, 623-641 (1992).
21. Ya. Sinai, Two Results Concerning Asymptotic Behavior of Solutions of the Burgers

Equation with Force, J. Stat. Phys. 64, 1-12 (1991).
22. Ya. Sinai, Statistics of Shocks in Solutions of Inviscid Burgers Equations, Commun. Math.

Phys. 148,601-620 (1992).
23. J. Wehr and J. Xin, White Noise Perturbation of the Viscous Shock Fronts of the Burgers

Equation, Commun. Math. Phys. 181, 183-203 (1996).
24. G. B. Whitham, Linear and Nonlinear Waves, Wiley and Sons, 1979.
25. S. van der Zee and W. van Riemsdijk, Transport of reactive solute in spatially variable

soil systems, Water Resour. Res. 23 (1987), pp. 2059-2069.

822/88/3-4.22

Front Speed in the Burgers Equation with a Random Flux 871


